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Abstract

Chronic kidney disease-mineral bone disorder (CKD-MBD) is a syndrome commonly

observed in subjects with impaired renal function. Phosphate metabolism has been

implicated in the pathogenesis of CKD-MBD and according to the phosphorocentric

hypothesis may be the key player in the pathogenesis of these abnormalities. As

phosphorous is an essential component for life, absorption from the bowel, accumu-

lation and release from the bones, and elimination through the kidneys are all homeo-

static mechanisms that maintain phosphate balance through very sophisticated

feedback mechanisms, which comprise as main actors: vitamin D (VD), parathyroid

hormone (PTH), calciproteins particles (CPPs), fibroblast growth factor-23 (FGF-23)

and other phosphatonins and klotho. Indeed, as the renal function declines, factors

such as FGF-23 and PTH prevent phosphate accumulation and hyperphosphatemia.

However, these factors per se may be responsible for the organ damages associated

with CKD-MBD, such as bone osteodystrophy and vascular calcification. We herein

review the current understanding of the CKD-MBD focusing on phosphorous metab-

olism and the impact of phosphate manipulation on surrogate and hard outcomes.
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1 | INTRODUCTION

Although several lines of evidence suggest an association with poor

outcomes, phosphorus is an anion element that plays a central role in

life.1 In humans, it exists as phosphate (PO3
4
�) and is implicated in

several biological systems. It is a critical component of nucleic acids

(deoxyribonucleic acid and ribonucleic acid) carrying and storing

genetic information, of adenosine triphosphate (ATP), having a pivotal

role in energy production and storage, and has structural function

both in cell membranes, as phospholipids, and in skeleton and teeth as

hydroxyapatite. Moreover, phosphorus is involved in various phos-

phorylation reactions, hormones and cell-signalling molecules. Phos-

phorus in humans is estimated to represent 1%–1.4% of the fat-free

mass.2 To put these figures in perspective, about 22 moles (or 630 g)

of phosphorus are present in a man of 70 kg of body weight. Of inter-

est, about 85% can be found in bones and teeth, while about 15% is

distributed in the soft tissues, and only a minimal portion (<1%) can be

found in the blood. Hence, what we measure in the blood is only a
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small part of the total body pool and likely does not represent the

total amount of phosphate in the body, even if it is within what we

consider the range for normal phosphorous (3.4–4.5 mg/dL or 1.12–

1.45 mmol/L). Moreover, as with other substances, serum phosphorus

concentration shows a circadian rhythm, with a nadir at 8 am, a first

peak and a second peak at 4 pm and between 0 and 4 am,3 which

attenuates the association between serum phosphate values and total

body pool and should be considered when interpreting phosphoremia.

Since phosphorus has so many functions, its balance is strictly con-

trolled. Absorption from the bowel, accumulation and release from

the bones, and elimination through the kidneys are all mechanisms

involved in phosphate homeostasis maintenance through very sophis-

ticated feedback mechanisms, which comprise as main actors: vitamin

D (VD), parathyroid hormone (PTH), calciproteins particles (CPPs),

fibroblast growth factor-23 (FGF-23) and other phosphatonins and

klotho (Figure 1). We herein briefly summarize the available evidence

on phosphate handling in individuals with normal and impaired kidney

function. A list of the abbreviations used in the text is provided in

Table 1.

2 | PHOSPHORUS METABOLISM IN
PATIENTS WITH NORMAL KIDNEY
FUNCTION

There are essentially three phases in phosphorus homeostasis:

absorption, elimination and release from the storage (primarily bones).

Phosphorus can be found in various foods, such as dairy products,

meat and vegetables.4 Adults tend to introduce and eliminate about

50 mmol (about 1.5 g) of phosphorus daily to maintain a neutral bal-

ance on a regular Western diet. While the bones store most of the

phosphate body pool, the kidneys are the most important organs

responsible for the fine regulation of the phosphate excretion

required to match the daily intake. Indeed, subtle changes in renal or

bone function occurring with age or various medical conditions may

impact phosphate balance. For example, phosphate balance tends to

be slightly negative in the elderly due to the loss of bone mass and an

increase in renal phosphate excretion.5 The small bowel regularly

absorbs about 41 mmol of the 50 mmol (about 80%) of phosphate

F IGURE 1 Phosphate homeostasis. Absorption from the bowel, accumulation and release from the bones, and elimination through the
kidneys are all mechanisms involved in phosphate homeostasis maintenance through very sophisticated feedback mechanisms, which comprise as
main actors: vitamin D (VD), parathyroid hormone (PTH), calciproteins particles (CPPs), fibroblast growth factor-23 (FGF-23) and other
phosphatonins and klotho.

TABLE 1 Abbreviations used in the text.

ATP Adenosine triphosphate

Calcitriol 1, 25 (OH)2 VD

CKD Chronic kidney disease

CKD-MBD Chronic kidney disease-mineral bone disorder

CPPs Calciproteins particles

DD-CKD Dialysis dependent chronic kidney disease

Fep Fractional phosphate excretion

FGF-23 Fibroblast growth factor-23

GFR Glomerula filtration rate

NDD-CKD Non-dialysis dependent-chronic kidney disease

PTH Parathyroid hormone

PTHrP PTH receptor

VD Vitamin D

VDR Nuclear vitamin D receptor
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ingested daily, mainly in the duodenum and jejunum. Phosphate

sources influence intestinal absorption since it is higher when phos-

phorus is in a soluble form, such as in meat, and lower when it is in an

insoluble form, such as in vegetables. About one-third of the ingested

phosphorus is eliminated through the faeces, including the amount

unabsorbed and the amount actively secreted into the gut. Finally,

two-thirds of the ingested phosphate is excreted through the urines.

Intestinal absorption or renal excretion can be substantially modified

to maintain phosphate homeostasis. In particular, in normal kidney

function, phosphate excretion can be adjusted by increasing GFR

and/or fractional phosphate excretion (FEp).6

3 | PHOSPHATE HANDLING IN THE
KIDNEYS

Several calciotropic and phosphoric factors, such as vitamin D, PTH,

FGF-23 and CCP, finely regulate these mechanisms. Herein, we briefly

describe their effects and implications in phosphorus homeostasis.

Vitamin D (VD) exists in two forms: vitamin D2 and vitamin D3.

While vitamin D2 or ergocalciferol is taken up with the diet, vitamin

D3 or cholecalciferol is ingested with food and synthesized in the skin

in a non-enzymatic process from the photolyzing of

7-dehydrocholesterol by the action of UV-B photons.7 To be biologi-

cally active, both vitamin D forms must undergo a double hydroxyl-

ation process by the liver and the proximal and distal tubule of

kidneys, resulting in 1, 25 (OH)2 VD or calcitriol.8 Calcitriol affects the

nuclear VD receptor (VDR), which can be found in nearly every tissue.

VD effects on phosphorus metabolism are closely related to that of

calcium, leading to an increase in the enteric and renal tubular absorp-

tion of phosphorus and calcium as well as calcium and phosphorus

deposition in bones.

PTH is a peptide hormone secreted by the chief cells in parathy-

roid glands. Its effects are conducted by binding with the PTH/PTHrP

type 1 receptor (PTH/PTHrP 1R), expressed primarily in bones and

kidneys but also in vessels and other tissues. As VD, PTH regulates

both calcium and phosphate balance. However, it induces renal tubu-

lar reabsorption of calcium in the distal convoluted tubule and tubular

secretion of phosphorus in the proximal convolute tubule, calcium and

phosphorus release from the bones, and indirect calcium and phos-

phorus absorption in the bowel by stimulating the renal hydroxyl-

ation of VD.

FGF-23 and phosphatonins are other protein hormones impli-

cated in phosphate homeostasis. FGF-23, the most studied phospha-

tonin, is secreted by the osteoblasts and osteocytes following an

increase in 1, 25 (OH)2 VD or dietary phosphorus loading,9–13

although, at present, a phosphate-sensing receptor has not been iden-

tified. FGF-23 production after phosphate loading seems to be magni-

fied in diabetic patients14 and possibly secondary to an increase in

calciprotein particles.15 FGF-23 acts on different target organs, such

as kidneys, parathyroid glands and bones themselves, binding to the

ubiquitous FGF-receptor due to the presence of an obligate co-

receptor, klotho.16,17 Its action reduces 1, 25 (OH)2 VD activation,

reduction of PTH secretion, and phosphaturia, resulting in a negative

phosphorus balance. Of note, elevated levels of FGF-23 have been

linked to left ventricular hypertrophy, heart failure, inflammation,

immunosuppression, and renal function deterioration and mortality in

CKD patients.18

CPPs are compounds formed by calcium, phosphorus and serum

protein fetuin-A.19 Being blood a supersaturated solution, increasing

phosphorus or calcium would increase CPP formation. CPP can be pri-

mary, formed by calcium-phosphate in the amorphous phase, or sec-

ondary, constituted by calcium-phosphate in the crystalline phase

(Figure 2). CPPs can be dosed in the blood of CKD patients and

animals20–22 and increase as kidney function declines.21 Although the

role of CPPs some lines of evidence suggest that these compounds

maybe implicated in mediating signalling among tissues and organ

damage. In particular, evidence suggests that CPPs are linked with

arterial stiffness, vascular calcification, and poor survival in CKD

patients.23

4 | PHOSPHORUS METABOLISM IN
CHRONIC KIDNEY DISEASE

In chronic kidney disease (CKD), phosphorus metabolism is deranged,

and phosphorus tends to increase (Figure 3). Interestingly, non-dialysis

dependent (NDD) CKD hyperphosphatemic patients are only 0.3% of

total CKD patients.24,25 The pathogenetic process of hyperphosphate-

mia is still debated.26–28 As the nephron mass decreases, FGF-23 and

PTH increase progressively, probably as early as stage 2–3a

CKD.29–31 Phosphorus increase would follow, classically, when GFR

declines under 30 mL/min.32 To complicate this scenario, some lines

of evidence suggest that klotho is also reduced due to kidney function

decline, thus inducing renal resistance to FGF-23 and a further

increase in FGF-23 plasma levels.33,34 Interestingly, a seminal study

by Stremke and co-workers35 demonstrates that fractional intestinal

absorption of phosphorus in patients on high phosphate intake did

not differ between those with and without chronic kidney disease

(eGFR 29–55 mL/min per 1.73 m2), despite of the fact that in the first

group, there was an overall reduced plasma concentration of

F IGURE 2 Calciprotein particles (CPPs) are compounds formed
by calcium, phosphorus and serum protein fetuin-A. Being blood a
supersaturated solution, increasing phosphorus or calcium would
increase CPP formation. CPP can be primary, formed by calcium-
phosphate in the amorphous phase, or secondary, constituted by
calcium-phosphate in the crystalline phase. CPPs may mediate the
organ damage and contribute to explain the CKD-MBD risk.
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1, 25 (OH)2 VD and an overall increase in PTH and FGF-23. It also

shows that phosphorus urinary excretion is not associated with phos-

phorus intestinal absorption, as found in rats before36 although classi-

cally, it was deemed a surrogate of phosphate intake.37 These findings

suggest reconsidering the role of 1, 25 (OH)2 VD in intestinal phos-

phorus absorption, as phosphate transporters independent from VD

activity have been described in patients with a phosphorus-restricted

diet.38 It should be nevertheless observed that circulating 1, 25 (OH)2

VD could not be representative of tissue 1, 25 (OH)2 VD, which could

be finally responsible for 1, 25 (OH)2 VD effects.39,40

Phosphorus metabolism has gained so much attention in the

recent past because most of the epidemiological and clinical observa-

tions have reported an association between the progressive increase

of phosphorus in CKD with adverse outcomes in both pre-

dialysis41–43 and dialysis-dependent (DD) patients.44–50 The cardio-

vascular system seems particularly involved as the kidney function

decreases.51–53 Interestingly, even in patients with normal kidney

function, there is an association between phosphate levels and all-

cause mortality, cardiovascular mortality, and morbidity.54–58

Phosphorus seems also to be an independent marker of progres-

sive renal failure, especially in younger patients with moderate-

to-severe CKD.59 It has been shown that phosphorus can induce CKD

in animals60 and humans61 when assumed in large amounts relative to

the available nephron mass. According to recent animal data, the fil-

tered phosphate in the renal tubule form with calcium and fetuin-A

urine calciproteins (CPP) that in turn can trigger a local inflammatory

response through the Toll-Like Receptor 4 which activates the NFkB

factor and reduce klotho, ultimately leading to tissue fibrosis and loss

of renal function. Hence the increased amount of phosphorous fil-

tered per single nephron in CKD may perpetrate a vicious cycle and

promote CKD progression.62

Besides phosphorus, other biomarkers implicated in CKD-mineral

bone disease (MBD), such as rising FGF-23,63,64 elevated PTH,65 high

levels of CPPs,20,21,66–71 and low fractional excretion of phosphorus

(FEp),72 have been associated with adverse outcomes. As for FGF-23,

rising values have been associated with death in CKD patients, specu-

latively due to left ventricular hypertrophy, anaemia, inflammation

and immune dysregulation,73–78 whereas stably elevated values were

not. On the opposite, FEp seems inversely associated with worse

renal outcomes. This is because, as kidney function decreases, CKD

patients cannot increase GFR and rely solely on FEp to maintain a

neutral phosphorus balance.30

5 | PHOSPHORUS SERUM LEVELS OR
PHOSPHORUS BALANCE: WHAT IS THE
MOST CLINICALLY RELEVANT BIOMARKER?

Being less than 1% of total body phosphorus dissolved in plasma,

phosphoremia is probably a poor marker of phosphorus balance. Nev-

ertheless, clinical studies have primarily focused on phosphoremia as

one of the most important biomarkers of CKD-MBD. While treating

hyperphosphatemia in NDD-CKD patients has shown improvement in

outcomes79,80 in normophosphatemic NDD-CKD patients, controver-

sial results have been obtained, mostly showing unaffected outcomes

after treating normophosphatemic patients with phosphate-

binders.81–87 Overall, RCT evidence is scarce, and most studies did

not include analysis of the biomarkers, such as FGF-23, CPPs, and uri-

nary FEp, or a comparison versus placebo. Therefore, it could be

inferred that for decades, we have dosed the wrong analytic, being

hyperphosphatemia possibly the epiphenomenon of metabolic

derangement and not the cause of organ damage. This would lead to

a focus on any of the biomarkers of CKD-MD as possible culprits.

As proposed by Isakova and co-workers in their seminal work,22

phosphorus balance in CKD patients could be simplified in two

phases. In phase 1, as kidney function decreases, there is a gradual

increase in FGF-23 and PTH, with the preservation of normophospha-

temia at the cost of increased phosphorus excretory capacity. In phase

2, which roughly starts when eGFR falls below 30 mL/min, renal dys-

function no longer guarantees proper phosphorus excretion despite

increasing values of FGF-23 and PTH, thus leading to hyperphospha-

temia. Interestingly, after phosphate loading, FEp is reduced in normal

renal function and cardiopathic patients with respect to non-

cardiopathic subjects88 and acts as an independent risk factor, modu-

lating the association between FGF-23 and cardiovascular outcomes

in normal renal function, cardiopathic patients.89 Reduced FEp could,

therefore, represent a principal and an independent cardiovascular risk

factor and could concur to reconsider the roles of biomarkers in

F IGURE 3 CKD-MBD pathogenesis. According to the
“phosphorocentric view,” phosphate excretion reduces as the GFR
declines. In turn, phosphate triggers FGF-23 and PTH release to
increase renal phosphate excretion. FGF-23 also reduces vitamin D
activation, contributing to lower phosphate and calcium intestinal
absorption. Lower levels of vitamin D, together with hypocalcemia,
promote PTH secretion. Altogether, these mechanisms restore
phosphate homeostasis by enhancing renal phosphate excretion and
inhibiting intestinal absorption (adaptive mechanism). However, if
renal function worsens, these compensatory mechanisms become
ineffective in preventing phosphate retention, and the subject is
exposed to phosphate, PTH, FGF-23, and low vitamin D levels may
occur (maladaptive mechanism). Legend: The arrow suggests positive
feedback, while the dot suggests negative feedback.
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CKD-MBD. Moreover, in animal models, reduced FEp per nephron

has been shown to correlate with tubule-interstitial lesions.36

In a new paradigm,90 positive phosphate balance could be fore-

cast by increased FGF-23 levels, irrespective of phosphoremia, which

consecutively would warrant phosphate-lowering strategies, such as

phosphate restriction and phosphate binders. High levels of FGF-23

would justify FEp measurement, which, if increased, would suggest an

excessive phosphate intake and, if reduced, a worsening of the kidney

function. Notably, reduced phosphate absorption, such as in a

phosphate-restricted diet or during phosphate binder therapy, would

reduce FEp. Positive phosphate balance would engender CPP forma-

tion, which then would be the ultimate responsible for phosphate-

induced organ damage19,90 To interpret CKD-MBD biomarkers, it is

essential to consider their evolution prospectively, as recommended

in the KDIGO 2017 clinical practice guidelines on CKD-MBD.52

6 | OVERVIEW OF EVIDENCE ON
PHOSPHATE BINDER USE IN CKD PATIENTS

Strategies for controlling phosphorus in CKD-MBD have classically

comprised dietary restriction of phosphate intake, phosphate binders,

VD analogues and calcimimetics. Lately, tenapanor, a small-molecule

inhibitor of the intestinal sodium/hydrogen exchanger (NHE3), has

proven to reduce serum phosphate in patients on maintenance dialy-

sis by reducing phosphate absorption, both alone91,92 and in combina-

tion with phosphate binders.93

An ideal phosphorus chelator should avidly bind phosphorus in

the gastrointestinal tract, not be absorbed, have few side effects, not

require many tablets to facilitate compliance, and be inexpensive.

Although numerous drugs are available today, the ideal phosphorus

binder, which allows optimal chelation without side effects and with a

positive cost-effectiveness ratio, does not exist. However, different

formulations on the market enable the customization of therapy from

case to case. Chelating agents based on calcium salts, sevelamer, lan-

thanum carbonate, ferric compounds and magnesium salts effectively

reduce serum phosphate, although differences among compounds

may exist. Phosphate binders, pre-dominantly based on calcium or

aluminium, were commercialized in the early 1970s. Subsequently,

other drugs with different formulations, characteristics, and side

effects have been developed. Since the 1990s, aluminium-containing

phosphate binders are no longer employed but for short periods of

time, giving tissue accumulation of aluminium and toxicity such low

turnover osteopathy (osteomalacia and adynamic disease), microcytic

anaemia, encephalopathy and dementia, especially in DD patients.94

Phosphate binders have been studied clinically in DD and NDD

CKD patients.

6.1 | Phosphate binders in DD-CKD patients

In DD-CKD patients, lanthanum carbonate-based95–98 calcium-

based,99,100 sevelamer-based,103,104 sucroferric oxyhydroxide-based101

and ferric citrate-based,102 phosphate binders have proven in RCTs

to reduce serum phosphate successfully. However, as suggested

before, hyperphosphatemia in CKD is possibly an epiphenomenon,

while FGF-23-klotho axis derangement is the leading cause of subse-

quent organ damage. Furthermore, calcium supplementation could

ultimately induce an increase in vascular calcifications, though the

evidence is controversial,103–111 and most, albeit not all, RCTs show

an increase in vascular calcifications with calcium-based binders.

However, accelerated vascular calcification progression was also

noted in subjects starting haemodialysis112,113 with calcium-based

chelators. Interestingly, even in normal renal function subjects, cal-

cium supplementation has been associated with increased coronary

artery calcification,114 while dietary calcium has not. Unlike dietary

calcium, which is associated with higher serum calcium and lower

FGF-23 concentrations, calcium supplementation is linked to

increased serum calcium without influencing FGF-23 levels in

DD-CKD patients.115 While these pieces of evidence suggest that

different sources of calcium may have other impacts on CKD-MBD

parameters, it is also possible that various binders have different

effects on the FGF23-Klotho axis. An RCT enrolling 1059 patients to

take sucroferric oxyhydroxide or sevelamer proved to reduce FGF-

23 over 1 year, with a beneficial adjunctive effect on bone metabo-

lism.116 Moreover, FGF-23 reduction has been demonstrated after

treatment with sevelamer, magnesium carbonate,117 and lanthanum

carbonate, but not calcium carbonate.118 In a small study, sevelamer

was proven to reduce FGF-23 and increase klotho.103 Unfortunately,

in most of the studies, the effect of phosphate binders on FGF-23/

Klotho levels has not been described, precluding any definitive con-

clusion on the effects of phosphate binders on the FGF23-klotho

axis. Similarly, data on CPPs are scanty, and a small RCT including

50 haemodialysis patients showed no difference in serum fetuin-A

decrement after 1-year treatment with calcium carbonate or

sevelamer.119

Although evidence is largely inconclusive, several other studies

suggest the differential impacts of various binders on vascular calcifi-

cation and cardiovascular outcomes. An RCT of 115 patients on main-

tenance dialysis showed delayed coronary artery calcification (CAC)

progression over 1 year when a strict (targeting normal phosphate

levels) versus a standard phosphate control using non-calcium-based

phosphate binders were enforced.120 If these data suggest that phos-

phate control may impact vascular calcification, some lines of evi-

dence support the notion that using calcium-containing phosphate

binders is associated with faster vascular calcification progression and

worse prognosis than calcium-free phosphate binders.79 Renal osteo-

dystrophy, bone density is decreased by calcium-based phosphate

binders in DD-CKD patients,121–123 while sevelamer124 and lantha-

num carbonate125 have been proven to prevent bone loss. A possible

mechanism could be calcium supplementation's relative inhibition of

PTH activity.105 PTH levels and bone activity are inversely associated

with CAC progression.126

However, not all trials confirmed the association of calcium-

containing phosphate binders with vascular calcification progression.

Interestingly, sevelamer showed similar CAC progression over 1 year

MARANDO ET AL. 5
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compared with calcium acetate when a concomitant intensive reduc-

tion of LDL-C was enforced,127 questioning the impact of calcium-

based binders on cardiovascular outcomes. In these regards, the

recent LANDMARK study, enrolling over 2000 patients, showed no

difference in cardiovascular outcomes over 3 years with lanthanum

compared with calcium carbonate.128

6.2 | Phosphate binders in NDD-CKD patients

To interpret the effect of phosphate binders in NDD-CKD patients,

for pathophysiological reasons, we refer to the two phases of the

phosphorus balance in CKD,22 differentiating normophosphatemic

and hyperphosphatemic patients129 due to the potential overlap of

phosphate and FGF23/Klotho axis as the cause of CKD-MBD associ-

ated organ damages. Compared with the use of phosphate binders in

DD-CKD patients, the evidence is scarce, and most of the RCTs focus

on phosphate levels, very few considering important biomarkers, such

as FGF-23, klotho levels, arterial calcifications and bone density.

Most of the trials included NDD-CKD normophosphatemic

patients, the largest subgroup. At present, evidence is at least contro-

versial. Most studies did not show any effect of phosphate binders

(sevelamer, lanthanum carbonate, calcium-based and iron-based), as

for phosphate levels,130 vascular involvement progression,83,84 FGF-

23 levels,131 klotho levels,130 VD levels,83 cardiovascular outcomes

(such as arterial stiffness, left ventricular mass or function).83,84,86

An RCT including 148 stage 3b-4 CKD patients showed that

phosphate binders altogether (calcium carbonate, sevelamer and lan-

thanum carbonate) reduce phosphate levels, FEp and PTH levels with-

out influencing FGF-23 levels and promote vascular calcifications.82

The increase in vascular calcifications could be driven by the effect of

the calcium-based binders (34% of patients who received phosphate

binders), which can induce positive calcium balance and tissue deposi-

tion, even if theoretically, phosphate chelation in the bowel by any

phosphate binder could provoke an increase in calcium absorption

and thus net calcium positive balance. However, it has been shown

that calcium supplementation of up to 2000 mg/die in CKD patients

can cause a substantial positive calcium balance. An RCT with

30 stages 3–4 CKD patients randomized to receive sevelamer

carbonate or calcium acetate showed improvement in inflammatory

biomarkers, HLD-c levels, CKD-MBD biomarkers (phosphate levels,

FGF-23 levels), and vascular calcification biomarkers (such as P and

E-selectins) in the sevelamer carbonate group.87 An RCT including

39 patients showed that lanthanum carbonate and a phosphate-

restricted diet successfully reduced FGF-23 levels in Stage 3 CKD

patients.132 As for iron-based binders, they proved to reduce PTH

levels successfully.131

Concerning hyperphosphatemic NDD-CKD patients, trials have

shown that most phosphate binders effectively reduce serum phos-

phorous levels, and some have investigated the impact of different

binders on hard outcomes. Lanthanum carbonate demonstrated its

efficacy in reducing phosphate load and FGF-23 levels, unlike calcium

carbonate.133,134 Ferric citrate hydrate reduced phosphoremia and

FGF-23 levels.135 Sevelamer proved effective in reducing all-cause

mortality and CKD progression to dialysis when administered in con-

junction with a phosphate-restricted diet136 and in reducing all-cause

mortality but not dialysis initiation when used as a single strategy.80

Compared with calcium acetate, sevelamer proved more effective in

reducing serum phosphate, and unlike calcium acetate, it reduced

FGF-23 levels and increased flow-mediated vasodilatation.137

Two RCTs138,139 have included both normophosphatemic and

hyperphosphatemic patients. Ruggiero and co-workers138 tested the

hypothesis that sevelamer could act synergistically with RAS blockade

to reduce proteinuria in CKD patients with residual proteinuria, know-

ing that phosphate levels have been associated with proteinuria in

nondiabetics stage 5 CKD patients.140 However, sevelamer did not

reduce proteinuria, FGF-23 levels, PTH or klotho levels, while it

reduced FEp, c-reactive protein, glycated haemoglobin and LDL-c.

Lastly, Block et al.,139 in an RCT involving stage 3–5 CKD patients,

showed that ferric citrate repletes iron storages, increasing haemoglo-

bin and reducing phosphoremia, FEp and FGF-23.140

7 | CONCLUSION

Phosphorus is a key element for the development of life. In humans,

its levels are strictly regulated by feedback loops that are deranged in

CKD due to the reduced nephron mass. Adaptive mechanisms are

stimulated to enhance renal phosphate excretion. However, renal

function deficit progression renders these mechanisms futile and

exposes a subject with CKD to both phosphorus and adaptive mecha-

nisms effectors toxicity. As the GFR drops below 30 mL/min/1.73 m2

these mechanisms become maladaptive. Although the pathophysiol-

ogy of phosphate toxicity needs elucidation, some evidence suggests

that the FGF-23-klotho axis, vitamin D and PTH derangement pro-

voke noxious effects and organ damage (especially cardiovascular

morbidity), contributing to the dismal risk of unfavourable outcomes

in CKD.141

To comprehensively assess the CKD-MBD associated risk bio-

markers, such as FGF-23, klotho, FEp and PTH, should be evaluated

prospectively together with serum levels of phosphate. Phosphate

serum levels could be a mistarget, an epiphenomenon of FGF-

23-klotho derangement, thus explaining the controversial results of

the RCTs. In these regards, two large ongoing trials will provide us

with evidence of the impact of phosphate-lowering strategies in CKD

patients receiving hemo- and peritoneal dialysis.142

A general recommendation on what type of phosphate binder to

use in any stage and patient with CKD is complicated and likely not

sustained by current evidence. While there is a consensus on reducing

the excessive amount of elemental calcium (i.e., above 1500 mg ele-

mental calcium/day), it is still being determined whether we should

not prescribe calcium-containing phosphate binders. Negative calcium

balance should be avoided to reduce the risk of bone fracture. The

CKD-MBD and European Renal Nutrition working groups of

the European Renal Association (ERA), together with the CKD-MBD

and Dialysis working groups of the European Society for Paediatric

6 MARANDO ET AL.

 14401797, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/nep.14407 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [18/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Nephrology (ESPN), in a recent document, suggest a total calcium

intake from diet and medications of 800–1000 mg/day and to not

exceed 1500 mg/day to maintain a neutral calcium balance in adults

with CKD.143 However, if hyperphosphatemia must be treated,

calcium-free binders may have a better risk–benefit profile in DD-

CKD and NDD-CKD hyperphosphatemic patients. At the same time,

the evidence is inconclusive in NDD-CKD normophosphatemic

patients, and no phosphate binder is suggested for these subjects.

Hence, the choice of binder should be individualized and encompass

different aspects such as pill burden, cost and patient's preferences.

Several aspects of phosphate metabolism and CKD-MBD remain

to be elucidated. Future studies should corroborate the use in the

clinic of different biomarkers, such as FGF-23 and CPPs, to assess

the risk of organ damage and provide us with solid evidence on how

to manage CKD-MBD. Until then, available evidence suggests main-

taining phosphate levels within the range of normality and avoiding

excessive calcium loading (above 1500 mg/day, including dietary and

phosphate binder sources).
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